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GP on multidimensional grid

• Regression model

𝑦 = 𝑓 𝒙 + 𝜖,

    where 𝑓 ∼ 𝐺𝑃(0, 𝑘)	the input 𝒙 forms Cartesian grid

• Example: 

• Environmental monitoring

𝑥 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠	𝑜𝑓	𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠	×	𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

• Brain image

𝑥 = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	×	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑏𝑟𝑎𝑖𝑛	×	𝑡𝑖𝑚𝑒 

𝑥 = 𝑥!×	𝑥"
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GP on non-grid - computation

Main bottleneck – the Gram matrix 𝐊

1. Inverse of Covariance matrix and its 
multiplication with a vector 𝐯

𝐊 + 𝜎!𝐈" #$𝐯

2. Log determinant

log |𝐊 + 𝜎!𝐈"|

𝑂 𝑛%  operations and 𝑂 𝑛!  storage

With 2-dimensional (non-grid) input, for 𝑖 =
1,… , 𝑛,

𝑦& = 𝑓 𝑥'&, 𝑥(& + 𝜖&

Prior: 𝑓 ∼ 𝐺𝑃(0, 𝑘) with
• 𝑘 = 𝑘$⊗𝑘% 
• 𝑘 = (1 + 𝑘$) ⊗ (1 + 𝑘%)

Alternatively, 𝒚 = 𝑦!…𝑦& ' ∼ 𝑀𝑉𝑁(𝟎, 𝐊)
• 𝐊 = 𝐊$ ∘ 𝐊% 
• 𝐊 = (𝑱& + 𝐊$) ∘ (𝑱& + 𝐊%) 

Note: 𝐊!/ 𝐊" is a	𝑛×𝑛 matrix and 𝑱# = 𝟏𝒏𝟏𝒏%
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𝑂(𝑛∑𝑛)) operations and 𝑂 ∑𝑛)!  storage

With 2-dimensional grid, for 𝑖 = 1,… , 𝑛$	and 
𝑗 = 1,… , 𝑛! 

𝑦&* = 𝑓 𝑥'&, 𝑥(* + 𝜖&*

Prior: 𝑓 ∼ 𝐺𝑃(0, 𝑘) with
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1

𝑛!

2

𝑥%: timestamp

1 2 𝑛"

𝑥$
location

𝐊$: 𝑛!×𝑛!

𝐊%: 𝑛"×𝑛"



GP on multidimensional grid - computation

Main bottleneck – the Gram matrix 𝐊

1. Inverse of Covariance matrix and its multiplication with a vector 𝐯

𝐊 + 𝜎"𝐈& +!𝐯 = 𝐐𝒔⊗𝐐𝒕 𝚲𝒔⊗𝚲𝒕 + 𝜎"𝐈& +𝟏 𝐐𝒔⊗𝐐𝒕	 '
	𝐯

2. Log determinant

log |𝐊 + 𝜎"𝐈&| = @
-,/
log(𝜆$-𝜆%/ + 𝜎") 

𝑂(max(∑𝑛)%, 𝑛∑𝑛))) operations 

𝑂 ∑𝑛)!  storage

Eigendecomposition, 𝑂(𝑛!# + 𝑛"#)

Mat-vec multiplication, 𝑂(𝑛 𝑛! + 𝑛" )



GP on multidimensional grid – additive GP?

3-dimensional case and Functional ANOVA

𝑓 𝑥&, 𝑥', 𝑥( = 𝑎 + 𝑓& 𝑥& + 𝑓' 𝑥' + 𝑓( 𝑥(

+𝑓&' 𝑥&, 𝑥' + 𝑓&( 𝑥&, 𝑥( + 𝑓'( 𝑥', 𝑥(

+ 𝑓&'((𝑥&, 𝑥', 𝑥( )

Main effect

Two-way interaction

Three-way interaction

If only main effects or some of the interaction effects are 
appropriate, we have a sum of Kronecker product in the Gram 
matrix – e.g. main effect only and let 𝛼0 = 1 

𝑘)*+,) 𝐱, 𝐱- = 𝛼..
/0&

(
(1 + 𝛼/𝑘/ 𝑥/, 𝑥/- )

1. Computational efficiency – does the Kronecker trick 

still work?

2. Identifiability –the constant term and the functions 

are not identifiable

𝐊 = 𝐽# + 𝐊&⊗ 𝐽## ⊗ 𝐽#$ + 𝐽&⊗𝐊'⊗ 𝐽#$ + 𝐽&⊗ 𝐽## ⊗𝐊( 

𝐊)*+,) = 𝛼.⊗/0&
( (𝐽#% + 𝛼/𝐊/)



GP on multidimensional grid – additive GP?

• E.g. To achieve sum to zero constraint on e.g. 𝑓E or 𝑓EF	 i.e. to achieve

       ∑G 𝑓E 𝑥EG = 0 or ∑G 𝑓EF 𝑥EG, 𝑥F = 0	∀𝑥F ∈ 𝒳F , we constraint the kernel 𝑘E
• Centring:  

 ,𝑘E 𝑥E, 𝑥EH = 𝑘 𝑥E, 𝑥EH − E
I
∑J 𝑘 𝑥E, 𝑥EJ − E

I
∑G 𝑘 𝑥EG, 𝑥HE + E

I#
∑GJ 𝑘(𝑥EG, 𝑥EJ) 

• Lu et al.(2022) – Additive Gaussian Process Revisited 

 ,𝑘E 𝑥E, 𝑥EH = 𝑘 𝑥E, 𝑥EH −
∑$ L M%,M%$ ∑& L M%&,M'%

∑&$ L(M%&,M%$)



GP on multidimensional grid – additive GP?

The corresponding Gram matrix:

• 1𝐊E = (𝕀 − E
N%
𝐽I%)𝐊E(𝕀 −

E
N%
𝐽I%)

• 1𝐊E = 𝐊E −
𝐊𝟏𝟏𝟏)𝐊%	
𝟏)𝐊𝟏𝟏

 

1. For both cases, at least one eigenvalue is zero

2. Eigenvectors corresponding to non-zero eigenvalues 

are all orthogonal to 𝟏

3. Given U𝐊$ = 𝑄$Λ$𝑄$+, the matrix 𝐽"1can be 

decomposed using the same orthonormal matrix 𝑄$

𝐽"1 = 𝑄$A$𝑄$+



GP on multidimensional grid – additive GP?

𝐊 =⊗PQE	
R 𝐽I* + 𝐊E⊗ 𝐽I# ⊗ 𝐽I+ + 𝐽E⊗𝐊F⊗ 𝐽I+ + 𝐽E⊗ 𝐽I# ⊗𝐊R

	=⊗PQE	
R 𝑄PAP𝑄PS + 𝑄EΛE𝑄ES⊗𝑄FAF𝑄FS⊗𝑄R𝐴R𝑄RS

	= 	 +𝑄EAE𝑄ES⊗𝑄FΛF𝑄FS⊗𝑄R𝐴R𝑄RS +⋯	

	= (⊗PQE	
R 𝑄P)(⊗PQE	

R 𝐴P + ΛE⊗𝐴F⊗𝐴R +⋯	)(⊗PQE	
R 𝑄PS)

 

𝑄!Λ!𝑄!' 𝑄"A"𝑄"' 𝑄!A!𝑄!' 𝑄"Λ"𝑄"
'

Diagonal



Application

Example with NOFin London
• 59 Monitoring stations, 𝑥$: coordinates
• 147days in early/mid 2020, 𝑥!: days
• Hourly measured, 𝑥%: hour of the day
• Total number of observation > 200,000

• MCMC (HMC, Stan) takes 10-15 minutes
• Maximum marginal likelihood estimation of scale 

parameters -  convergence in a few seconds 

the daily NO2 pattern 
https://www.londonair.org.uk/
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GP on incomplete multidimensional grid 

Is Missingness mechanism MCAR/MAR?

Complete case analysis

Yes



GP on incomplete multidimensional grid 

𝒚𝟏 𝒚𝟐 𝒚𝟑 … 𝒛𝟏 𝒛𝟐 …
𝒛𝒍

𝒚: observed part, length n)

𝒛: missing part, length m)

]𝒚 = 𝑦+, 𝒛+ +, length N=n+m

Complete case analysis

log 𝑝 𝒚 𝜽 =	−
1
2
𝐲S 𝐊𝐧𝐧 + 𝜎F𝐈I YE𝐲 + log 𝐊𝒏𝒏 + 𝜎F𝐈I + 𝑐

𝐊𝑵𝑵: Evaluated at complete grid

𝐊𝒏𝒏: Evaluated at input corresponding 
to the observed part 𝒚 

No Kronecker product structure



Approximation to complete case analysis 
 - Gilboa et al.(2013) / Flaxman et al. (2015)

𝒚: observed part, length n)

𝒛: missing part, length m)

]𝒚 = 𝑦+, 𝒛+ +, length N=n+m

log 𝑝 𝒚 𝜽 =	−
1
2
(𝐲+ 𝐊𝐧𝐧 + 𝜎!𝐈" #$𝐲 + log |𝐊𝒏𝒏 + 𝜎!𝐈"|)

§ Term 1: fill 𝒛	with ”imaginary” observations and

]𝒚+ 𝐊𝐍𝐍 + 𝐃 #$]𝒚 	 → 	term	1, as	 w → 0	
     where

𝐃 =
𝜎!𝐈𝐧 𝟎𝒏𝒎
𝟎𝒎𝒏 𝑤#𝟏	𝐈𝒎

      Can be computed using Conjugate Gradient decent algorithm and with 𝑂(𝐽𝑁∑𝑛))

§ Term 2

log 𝐊𝒏𝒏 + 𝜎!𝐈" ≈m
&3$

"
log n𝜆& + 𝜎!

    where n𝜆& =
"
4 𝜆&

(4) and 𝜆$
(4), … , 𝜆"

(4) are the 𝑛 largest eigenvalues of 𝐊𝐍𝐍

Term 1 Term 2



GP on incomplete multidimensional grid 

Is Missingness mechanism MCAR/MAR?

• Monitoring devices are more likely to fail at higher(lower) 
end, or some values may be censored

• Repeated measurement of mental health status – no entries 
when symptoms are worse 

No

• Possible to model probability of missing/observed and incorporate it when fitting 

model using the complete case analysis approximation

• Some occasions, partial knowledge on missing part 𝑧 is available (cut-off, interval)



Stochastic EM algorithm

𝒚𝟏 𝒚𝟐 𝒚𝟑 … 𝒛𝟏 𝒛𝟐 …
𝒛𝒍

𝒚: observed part, length n)

𝒛: missing part, length m)

]𝒚 = 𝑦+, 𝒛+ +, length N=n+m

EM algorithm
𝑄 𝜃|𝜃[YE = ∫ log 𝑝 L𝒚 𝜃 𝑝 𝒛 𝒚, 𝜃[YE 𝑑𝒛

• Directly evaluating 𝑄 𝜃|𝜃[YE  is costly
• MCEM  / stochastic (Approximation) EM possible, but sampling from 
𝑝 𝒛 𝒚, 𝜃[YE  faces multiple challenges, especially with some constraints 
reflecting missingness mechanism

Stochastic EM with Gibbs Sampling
At each step, sample from 𝑧!|𝒚, 𝒛+!%+!, 𝜃%+!…
   Univariate problem

• easy to take into accont missingness mechanism 
• Mean and variance can be computed by rank 2 

update of Gram matrix 𝐊𝑵𝑵



Sampling from 𝑝 𝒛 𝒚, 𝜃!"#

𝒚: observed part, length n)

𝒛: missing part, length m)

]𝒚 = 𝑦+, 𝒛+ +, length N=n+m

Conditional distribution 𝒛 𝒚, 𝜃(#$

𝑝 𝒛 𝒚, 𝜃(#$ = 𝑀𝑉𝑁 𝜇 𝜃(#$ , Σ 𝜃(#$

where

𝜇 𝜃(#$ = 𝐊7" 𝐊𝐧𝐧 + 𝜎!𝐈" #$𝒚

Σ 𝜃(#$ = 𝐊77 − 𝐊7" 𝐊𝐧𝐧 + 𝜎!𝐈" #$𝐊"7

• Both 𝐊𝐧𝐧 + 𝜎!𝐈" #$𝒚 and 𝐊𝐧𝐧 + 𝜎!𝐈" #$𝐊"7 can be computed using CG decent

• Takes takes 𝑂(2 231
4 84∑𝑛)) to compute 𝑚×𝑚 covariance matrix 



Sampling from 𝑝 𝒛 𝒚, 𝜃!"# - Gibbs sampling 

𝒚: observed part, length n)

𝒛: missing part, length m)

]𝒚 = 𝑦+, 𝒛+ +, length N=n+m

At 𝑡-th iteration,

Ø Sample from  𝑧$
(()|𝒚, 𝒛#$

(#$ 	, 𝜃(#$ ∼ 𝑁 𝜇$
( , 𝑣$

(()	 where

𝜇$
( = 𝜶 𝑥$

7' +
𝒚

	𝑣$
(() = 𝑘(𝑥$

7' , 𝑥$
7' ) − 𝜶 𝑥$

7' +
𝐤4#9125 (𝑥$

7' )

 And 𝛼 𝑥$
7' = 𝐊4#9125 ,4#91

25 	+ 𝜎!𝐈"#$
#$
𝐤4#9125 (𝑥$

7' )

• 𝛼 𝑥$
7' 	can be computed by rank 2 update of 𝐊4,4 + 𝜎!𝐈4

#$	𝐤4(𝑥$
7' )

Ø Sample from  𝑧!
(()|𝒚, 𝑧$

((), 𝒛#($,!)
(#$ 	, 𝜃(#$ ∼ 𝑁 𝜇!

( , 𝑣!
(()	

Ø …



Stochastic EM with Gibbs sampling 

Merits

Ø Efficiency: 𝑚𝑁∑𝑛P	operations instead of 

Ø EM without Gibbs: , ,-%
# ^_∑𝑛P + 𝑂(𝑚R) 

Ø Complete case analysis approximation:	 𝐵𝑁∑𝑛P
Ø Incorporating some missingness mechanism e.g., 𝑧 > 𝑐 for some constant c 

can be ensured in the sampling step.

𝑛 = ∏𝑛): l ength of the observed 𝒚

𝑚 ∶  length of the missing 𝒛

𝑁 = 𝑛 +𝑚:		length of ]𝒚 = 𝑦+, 𝒛+ +, 

𝐵: # of iterations for CG decent



Simulation – Computation time

𝑚 = 200 𝑁 = 50×50



Summary and future work 

Ø More realistic missingness mechanism and application to real world data

Ø Modifying the stochastic EM algorithm

Ø Gibbs + HMC (MH) for full MCMC, similar to De Oliveira(2005) but on the grid

Complete case analysis Missing value imputation with EM + Gibbs

+
Model fitting and posterior mean fast to 
compute (appoximation using conjugate 
gradient decent available)

Wider missing not at random scenarios can be 
handled

-
• Missingness mechanism that can be 

incorporated is limited, could lead to bias 
• Sampling from posterior scales badly with 𝑚

Scalability for large 𝑁 and 𝑚 still under 
investigation
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