Additive Gaussian Process Regression on an incomplete grid

Sahoko Ishida

Department of Computer Science

University of Oxford

Wicher Bergsma

Department of Statistics

London School of Economics and Political Science

RSS International Conference 2024, Brighton

GP on multidimensional grid

• Regression model

 $y = f(\boldsymbol{x}) + \boldsymbol{\epsilon},$

where $f \sim GP(0, k)$ the input x forms Cartesian grid

- Example:
 - Environmental monitoring

 $x = coordinates of stations \times timestamp$

$$x = x_1 \times x_2$$

GP on multidimensional grid

• Regression model

 $y = f(\boldsymbol{x}) + \boldsymbol{\epsilon},$

where $f \sim GP(0, k)$ the input **x** forms Cartesian grid

- Example:
 - Environmental monitoring
 - $x = coordinates of stations \times timestamp$
 - Brain image

 $x = Individual \times location$ in the brain \times time

 $x = x_1 \times x_2 \times x_3$

GP on non-grid - computation

With 2-dimensional (non-grid) input, for i = 1, ..., n,

$$y_i = f(x_{si}, x_{ti}) + \epsilon_i$$

Prior: $f \sim GP(0, k)$ with

- $k = k_s \otimes k_t$ • $k = (1 + k_s) \otimes (1$
- $k = (1 + k_s) \otimes (1 + k_t)$

Alternatively, $\mathbf{y} = (y_1 \dots y_n)^{\mathsf{T}} \sim MVN(\mathbf{0}, \mathbf{K})$

• $\mathbf{K} = \mathbf{K}_{s} \circ \mathbf{K}_{t}$

•
$$\mathbf{K} = (\mathbf{J}_n + \mathbf{K}_s) \circ (\mathbf{J}_n + \mathbf{K}_t)$$

Note: $\mathbf{K}_s / \mathbf{K}_t$ is a $n \times n$ matrix and $\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n^{\top}$

 $\label{eq:main_state} \mbox{Main bottleneck} - \mbox{the Gram matrix} \ K$

1. Inverse of Covariance matrix and its multiplication with a vector **v**

$$(\mathbf{K} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{v}$$

2. Log determinant

 $\log |\mathbf{K} + \sigma^2 \mathbf{I}_n|$

 $O(n^3)$ operations and $O(n^2)$ storage

GP on multidimensional grid - computation

With 2-dimensional **grid**, for $i = 1, ..., n_1$ and $j = 1, ..., n_2$ $y_{ij} = f(x_{si}, x_{tj}) + \epsilon_{ij}$

Prior: $f \sim GP(0, k)$ with

k = *k_s* ⊗ *k_t k* = (1 + *k_s*) ⊗ (1 + *k_t*)

Alternatively, $\mathbf{y} = (y_1 \dots y_n)^\top \sim MVN(\mathbf{0}, \mathbf{K})$

- $\mathbf{K} = \mathbf{K}_{s} \otimes \mathbf{K}_{t}$
- $\mathbf{K} = (\mathbf{J}_{n_1} + \mathbf{K}_s) \otimes (\mathbf{J}_{n_2} + \mathbf{K}_t)$

Main bottleneck – the Gram matrix K

$$\begin{split} \mathbf{K} &= \mathbf{K}_{s} \otimes \mathbf{K}_{t} \\ &= \mathbf{Q}_{s} \boldsymbol{\Lambda}_{s} \mathbf{Q}_{s}^{\top} \otimes \mathbf{Q}_{t} \boldsymbol{\Lambda}_{t} \mathbf{Q}_{t}^{\top} \\ &= (\mathbf{Q}_{s} \otimes \mathbf{Q}_{t}) (\boldsymbol{\Lambda}_{s} \otimes \boldsymbol{\Lambda}_{t}) (\mathbf{Q}_{s} \otimes \mathbf{Q}_{t})^{\top} \end{split}$$

GP on multidimensional grid - computation

Main bottleneck – the Gram matrix K

1. Inverse of Covariance matrix and its multiplication with a vector **v**

$$(\mathbf{K} + \sigma^{2}\mathbf{I}_{n})^{-1}\mathbf{v} = (\mathbf{Q}_{s} \otimes \mathbf{Q}_{t})(\mathbf{\Lambda}_{s} \otimes \mathbf{\Lambda}_{t} + \sigma^{2}\mathbf{I}_{n})^{-1}(\mathbf{Q}_{s} \otimes \mathbf{Q}_{t})^{\mathsf{T}}\mathbf{v}$$
Log determinant
$$Eigendecomposition, O(n_{1}^{3} + n_{2}^{3})$$

$$\log |\mathbf{K} + \sigma^2 \mathbf{I}_n| = \sum_{i,j} \log(\lambda_{si} \lambda_{tj} + \sigma^2)$$

 $O(\max(\sum n_l^3, n \sum n_l))$ operations $O(\sum n_l^2)$ storage

2.

3-dimensional case and Functional ANOVA

$$F(x_{1}, x_{2}, x_{3}) = a + f_{1}(x_{1}) + f_{2}(x_{2}) + f_{3}(x_{3})$$
Main effect
$$+ f_{12}(x_{1}, x_{2}) + f_{13}(x_{1}, x_{3}) + f_{23}(x_{2}, x_{3})$$
Two-way interaction
$$+ f_{123}(x_{1}, x_{2}, x_{3})$$
Three-way interaction
$$k_{ANOVA}(\mathbf{x}, \mathbf{x}') = \alpha_{0} \prod_{l=1}^{3} (1 + \alpha_{l}k_{l}(x_{l}, x_{l}'))$$

$$\mathbf{K}_{ANOVA} = \alpha_{0} \bigotimes_{l=1}^{3} (J_{n_{l}} + \alpha_{l}\mathbf{K}_{l})$$

If only main effects or some of the interaction effects are appropriate, we have **a sum of Kronecker product** in the Gram matrix – e.g. main effect only and let $\alpha_0 = 1$

 $\mathbf{K} = J_n + \mathbf{K}_1 \otimes J_{n_2} \otimes J_{n_3} + J_1 \otimes \mathbf{K}_2 \otimes J_{n_3} + J_1 \otimes J_{n_2} \otimes \mathbf{K}_3$

- <u>Computational efficiency</u> does the Kronecker trick still work?
- 2. <u>Identifiability</u> the constant term and the functions

are not identifiable

- E.g. To achieve sum to zero constraint on e.g. f_1 or f_{12} i.e. to achieve $\sum_i f_1(x_{1i}) = 0$ or $\sum_i f_{12}(x_{1i}, x_2) = 0 \quad \forall x_2 \in \mathcal{X}_2$, we constraint the kernel k_1
 - Centring:

$$\tilde{k}_1(x_1, x_1') = k(x_1, x_1') - \frac{1}{n} \sum_j k(x_1, x_{1j}) - \frac{1}{n} \sum_i k(x_{1i}, x_1') + \frac{1}{n^2} \sum_{ij} k(x_{1i}, x_{1j})$$

• Lu et al.(2022) – Additive Gaussian Process Revisited

$$\tilde{k}_1(x_1, x_1') = k(x_1, x_1') - \frac{\sum_j k(x_1, x_{1j}) \sum_i k(x_{1i}, x_1')}{\sum_{ij} k(x_{1i}, x_{1j})}$$

The corresponding Gram matrix:

•
$$\widetilde{\mathbf{K}_1} = (\mathbb{I} - \frac{1}{n_1}J_{n_1})\mathbf{K}_1(\mathbb{I} - \frac{1}{n_1}J_{n_1})$$

•
$$\widetilde{\mathbf{K}_1} = \mathbf{K}_1 - \frac{\mathbf{K}_1 \mathbf{1} \mathbf{1}^\mathsf{T} \mathbf{K}_1}{\mathbf{1}^\mathsf{T} \mathbf{K}_1 \mathbf{1}}$$

- 1. For both cases, at least one eigenvalue is zero
- 2. Eigenvectors corresponding to non-zero eigenvalues

are all orthogonal to ${f 1}$

3. Given $\widetilde{\mathbf{K}_1} = Q_1 \Lambda_1 Q_1^{\mathsf{T}}$, the matrix J_{n_1} can be

decomposed using the same orthonormal matrix Q_1

 $J_{n_1} = Q_1 \mathbf{A}_1 Q_1^{\mathsf{T}}$

Example with NO_2 in London

- 59 Monitoring stations, x_1 : coordinates
- 147days in early/mid 2020, *x*₂: days
- Hourly measured, x_3 : hour of the day –
- Total number of observation > 200,000

- MCMC (HMC, Stan) takes 10-15 minutes
- Maximum marginal likelihood estimation of scale parameters - convergence in a few seconds

Example with NO_2 in London

- 59 Monitoring stations, x₁: coordinates
- 147 days in early/mid 2020, x_2 : days
- Hourly measured, *x*₃: hour of the day
- Total number of observation > 200,000

- MCMC (HMC, Stan) takes 10-15 minutes
 Maximum marginal likelihood estimation of scale
- Maximum marginal likelihood estimation of scale parameters - convergence in a few seconds

the daily NO2 pattern

Example with NO_2 in London

- 59 Monitoring stations, x_1 : coordinates
- 147days in early/mid 2020, *x*₂: days
- Hourly measured, x_3 : hour of the day
- Total number of observation > 200,000

- MCMC (HMC, Stan) takes 10-15 minutes
- Maximum marginal likelihood estimation of scale parameters - convergence in a few seconds

Example with NO_2 in London

- 59 Monitoring stations, x_1 : coordinates
- 147days in early/mid 2020, *x*₂: days
- Hourly measured, *x*₃: hour of the day
- Total number of observation > 200,000

- MCMC (HMC, Stan) takes 10-15 minutes
- Maximum marginal likelihood estimation of scale parameters - convergence in a few seconds

GP on incomplete multidimensional grid

GP on incomplete multidimensional grid

Approximation to complete case analysis - Gilboa et al.(2013) / Flaxman et al. (2015)

$$\log p(\mathbf{y}|\boldsymbol{\theta}) = -\frac{1}{2} (\mathbf{y}^{\mathsf{T}} (\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y} + \log |\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n|)$$

Term 1 Term 2

Term 1: fill z with "imaginary" observations and

$$\widetilde{y}^{\mathsf{T}}(\mathbf{K}_{\mathsf{NN}} + \mathbf{D})^{-1}\widetilde{y} \to \text{term 1}, \text{ as } w \to 0$$

where

$$\mathbf{D} = \begin{bmatrix} \sigma^2 \mathbf{I_n} & \mathbf{0}_{nm} \\ \mathbf{0}_{mn} & w^{-1} \mathbf{I_m} \end{bmatrix}$$

n

Can be computed using Conjugate Gradient decent algorithm and with $O(JN\Sigma n_l)$

Term 2

$$\log |\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n| \approx \sum_{i=1}^n \log(\tilde{\lambda}_i + \sigma^2)$$

where $\tilde{\lambda}_i = \frac{n}{N} \lambda_i^{(N)}$ and $\lambda_1^{(N)}, \dots, \lambda_n^{(N)}$ are the *n* largest eigenvalues of \mathbf{K}_{NN}

y: observed part, length n) z: missing part, length m) $\widetilde{y} = (y^{T}, z^{T})^{T}$, length N=n+m

GP on incomplete multidimensional grid

Is Missingness mechanism MCAR/MAR?

→ No

- Monitoring devices are more likely to fail at higher(lower) end, or some values may be censored
- Repeated measurement of mental health status no entries when symptoms are worse
- Possible to model probability of missing/observed and incorporate it when fitting model using the complete case analysis approximation
- Some occasions, partial knowledge on missing part z is available (cut-off, interval)

Stochastic EM algorithm

 $Q(\theta|\theta^{t-1}) = \int \log p(\widetilde{y}|\theta) p(\boldsymbol{z}|\boldsymbol{y}, \theta^{t-1}) d\boldsymbol{z}$

- Directly evaluating $Q(\theta | \theta^{t-1})$ is costly
- MCEM / stochastic (Approximation) EM possible, but sampling from $p(\mathbf{z}|\mathbf{y}, \theta^{t-1})$ faces multiple challenges, especially with some constraints reflecting missingness mechanism

Sampling from $p(z|y, \theta^{t-1})$

Conditional distribution $(\mathbf{z}|\mathbf{y}, \theta^{t-1})$

 $p(\boldsymbol{z}|\boldsymbol{y}, \theta^{t-1}) = MVN(\mu(\theta^{t-1}), \Sigma(\theta^{t-1}))$

y: observed part, length n) z: missing part, length m) $\widetilde{y} = (y^{T}, z^{T})^{T}$, length N=n+m

where

$$\mu(\theta^{t-1}) = \mathbf{K}_{mn}(\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}$$

$$\Sigma(\theta^{t-1}) = \mathbf{K}_{mm} - \mathbf{K}_{mn}(\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{K}_{nm}$$

- Both $(\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{y}$ and $(\mathbf{K}_{nn} + \sigma^2 \mathbf{I}_n)^{-1} \mathbf{K}_{nm}$ can be computed using CG decent
- Takes takes $O(\frac{m(m+1)}{2}JN\sum n_l)$ to compute $m \times m$ covariance matrix

Sampling from $p(z|y, \theta^{t-1})$ - Gibbs sampling

At *t*-th iteration,

 \geq

•••

Sample from
$$z_1^{(t)} | \boldsymbol{y}, \boldsymbol{z}_{-1}^{(t-1)}, \theta^{t-1} \sim N\left(\mu_1^{(t)}, v_1^{(t)}\right)$$
 where

$$\mu_1^{(t)} = \boldsymbol{\alpha} \left(x_1^{(ms)}\right)^{\mathsf{T}} \boldsymbol{y}$$

$$v_1^{(t)} = k(x_1^{(ms)}, x_1^{(ms)}) - \boldsymbol{\alpha} \left(x_1^{(ms)}\right)^{\mathsf{T}} \mathbf{k}_{N-x_1^{(ms)}}(x_1^{(ms)})$$

y: observed part, length n) z: missing part, length m) $\widetilde{y} = (y^{T}, z^{T})^{T}$, length N=n+m

And
$$\alpha \left(x_1^{(ms)} \right) = \left(\mathbf{K}_{N-x_1^{(ms)}, N-x_1^{(ms)}} + \sigma^2 \mathbf{I}_{n-1} \right)^{-1} \mathbf{k}_{N-x_1^{(ms)}} (x_1^{(ms)})$$

•
$$\alpha \left(x_1^{(ms)} \right)$$
 can be computed by rank 2 update of $\left(\mathbf{K}_{N,N} + \sigma^2 \mathbf{I}_N \right)^{-1} \mathbf{k}_N (x_1^{(ms)})$

Sample from $z_2^{(t)} | \mathbf{y}, z_1^{(t)}, \mathbf{z}_{-(1,2)}^{(t-1)}, \theta^{t-1} \sim N\left(\mu_2^{(t)}, v_2^{(t)}\right)$

Stochastic EM with Gibbs sampling

Merits

- > Efficiency: $mN\sum n_l$ operations instead of
 - \blacktriangleright EM without Gibbs: $\frac{m(m+1)}{2}BN\sum n_l + O(m^3)$

 $n = \prod n_l$: I ength of the observed ym: length of the missing zN = n + m: length of $\tilde{y} = (y^{T}, z^{T})^{T}$, B: # of iterations for CG decent

- > Complete case analysis approximation: $BN\Sigma n_l$
- > Incorporating some missingness mechanism e.g., z > c for some constant c can be ensured in the sampling step.

Simulation – Computation time

m = 200

 $N = 50 \times 50$

Summary and future work

	Complete case analysis	Missing value imputation with EM + Gibbs
Ŧ	Model fitting and posterior mean fast to compute (appoximation using conjugate gradient decent available)	Wider missing not at random scenarios can be handled
_	 Missingness mechanism that can be incorporated is limited, could lead to bias Sampling from posterior scales badly with m 	Scalability for large N and m still under investigation

> More realistic missingness mechanism and application to real world data

- Modifying the stochastic EM algorithm
- ➤ Gibbs + HMC (MH) for full MCMC, similar to <u>De Oliveira(2005)</u> but on the grid

Reference

De Oliveira, Victor. "Bayesian inference and prediction of Gaussian random fields based on censored data." *Journal of Computational and Graphical Statistics* 14, no. 1 (2005): 95-115.

Flaxman, Seth, Andrew Wilson, Daniel Neill, Hannes Nickisch, and Alex Smola. "Fast Kronecker inference in Gaussian processes with non-Gaussian likelihoods." In *International conference on machine learning*, pp. 607-616. PMLR, 2015.

Gilboa, Elad, Yunus Saatçi, and John P. Cunningham. "Scaling multidimensional inference for structured Gaussian processes." *IEEE transactions on pattern analysis and machine intelligence* 37, no. 2 (2013): 424-436.

Ishida, Sahoko, and Wicher Bergsma. "Efficient and Interpretable Additive Gaussian Process Regression and Application to Analysis of Hourly-recorded NO2 Concentrations in London." *arXiv preprint arXiv:2305.07073* (2023).

Lu, Xiaoyu, Alexis Boukouvalas, and James Hensman. "Additive gaussian processes revisited." In *International Conference on Machine Learning*, pp. 14358-14383. PMLR, 2022.