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Multi-dimensional grid/panel data

Three-dimension example: brain imaging

▶ Flexible statistical modelling e.g. incorporating spatial and
time dependence and its interaction

▶ Computational efficiency as the number of observations tends
to be large



Additive GP models

▶ For i = 1, ..., n, consider a regression model for a response
yi ∈ R and two predictors x1i ∈ X1 and x2i ∈ X2:

yi = f (x1i , x2i ) + ϵi

with iid error ϵi ∼ N(0, σ2).
▶ Two model to consider

▶ Main effect model

f (x1i , x2i ) = a+ f1(x1i ) + f2(x2i )

▶ Interaction effect model

f (x1i , x2i ) = a+ f1(x1i ) + f2(x2i ) + f12(x1i , x2i )

where a is constant



Statistical modelling through kernels

▶ Prior for each term given k1 : X1 ×X1 → R and
k1 : X2 ×X2 → R.

a ∼ N(0, 1), f1 ∼ GP(0, k1), f2 ∼ GP(0, k2),

f12 ∼ GP(0, k1 ⊗ k2)

▶ Prior over f : f ∼ GP(0, k) where k is defined on input space
X = X1 ×X2 and given by k : X × X → R
▶ Main effect model

k(x , x ′) = 1 + k1(x1, x
′
1) + k2(x2, x

′
2)

▶ Interaction effect model

k(x , x ′) = 1 + k1(x1, x
′
1) + k2(x2, x

′
2) + k1(x1, x

′
1)k2(x2, x

′
2)

where x = (x1, x2)
⊤ ∈ X



Statistical modelling through kernels

Alternatively,

f = (f (x1), . . . , f (xn))
⊤ ∼ MVN(0,K)

where

▶ Main: K = 1n1⊤n +K1 +K2

▶ Interaction: K = 1n1⊤n +K1 +K2 +K1 ◦K2



ANOVA decomposition kernel

▶ With 2 variables, the interaction model is the saturated model
with saturated ANOVA decomposition kernel

k(x , x ′) =
(
1 + k1(x1, x

′
1)
) (

1 + k2(x2, x
′
2)
)

[Wahba, 1990, Gu, 2002] for RKHS and [Stitson et al., 1999]
for SVM

▶ With d variables x = (x1, . . . , xd)
⊤

k(x , x ′) =
d∏

l=1

(
1 + kl(xl , x

′
l )
)

Includes 2d terms : constant term 1, main terms, all
interaction terms



Hierarchical ANOVA decomposition kernel

1. Interaction terms – tensor product kernel

2. Interactions included with any main + lower-order interaction
terms



Main constraints

O(n3) time complexity and O(n2) memory requirement associated
with

1. Inverse of Covariance matrix and its multiplication with a
vector v (

K+ σ2In
)−1

v

2. Log determinant
log |K+ σ2In|



Kronecker products in Covariance matrix

When we have multi-dimensional grid data, Kronecker product
structure in K enables efficient evaluation of the above.

▶ Interaction effect model (saturated):

K = (1n11
⊤
n1 +K1)⊗ (1n21

⊤
n2 +K2)

▶ Main effect model:

K = 1n11
⊤
n1 ⊗ 1n21

⊤
n2 +K1 ⊗ 1n21

⊤
n2 + 1n11

⊤
n1 ⊗K2



Kronecker products in Covariance matrix

▶ Existing literature on Kronecker approach in GP handles a
limited number of models (separable kernel) including
▶ a saturated model
▶ a model with only the highest interaction

▶ Our contribution: flexible with any hierarchical ANOVA kernel



Efficient implementation using Kronecker products

Main goal: Decomposition of Gram matrix

K = (Q1 ⊗Q2)D(Q1 ⊗Q2)
⊤

where Ql is orthonormal, and D is diagonal with all non-negative
diagonal elements

1. (
K+ σ2In

)−1
v = (Q1 ⊗Q2)(D+ σ2I)−1(Q1 ⊗Q2)

⊤v

2.
log |K+ σ2In| =

∑
i

logDii + σ2

Time complexity: O(
∑

n3l ) or O(n
∑

nl), memory: O(
∑

n2l )



Eigendecomposition of K

Separable kernel

K = K̃1 ⊗ K̃2

= (Q1Λ1Q
⊤
1 )⊗ (Q2Λ2Q

⊤
2 )

= (Q1 ⊗Q2)(Λ1 ⊗Λ2)(Q1 ⊗Q2)
⊤

e.g.K̃l = 1nl1
⊤
nl
+Kl



Eigendecomposition of K

Non-separable kernel such as

K = 1n11
⊤
n1 ⊗ 1n21

⊤
n2 +K1 ⊗ 1n21

⊤
n2 + 1n11

⊤
n1 ⊗K2

Each term consists of Kronecker product of 1nl1
⊤
nl

and Kl .



Eigendecomposition of K

If each Kl is centered using centering matrix C = Inl − 1
nl
1nl1

⊤
nl

▶ it has at least 1 zero eigenvalues, and

▶ all eigenvectors corresponding to non-zero (and positive)
eigenvalues are orthogonal to 1nl

Eigendecomposition

▶ Kl = QlΛlQ
⊤
l with

Λl = diag(0, λ2, . . . , λnl )

Ql =

 1√
nl
1nl q2 . . . qnl


▶ 1nl1

⊤
nl
= QlAlQ

⊤
l with

Al = diag(nl , 0, . . . , 0)



Eigendecomposition of K

For centered K1 and K2,

K =

Q1A1Q⊤
1︷ ︸︸ ︷

1n11
⊤
n1 ⊗

Q2A2Q⊤
2︷ ︸︸ ︷

1n21
⊤
n2 +

Q1Λ1Q⊤
1︷︸︸︷

K1 ⊗1n21
⊤
n2 + 1n11

⊤
n1 ⊗

Q2Λ2Q⊤
2︷︸︸︷

K2

= (Q1 ⊗Q2) (A1 ⊗ A2 +Λ1 ⊗ A2 + A1 ⊗Λ2)︸ ︷︷ ︸
diagonal

(Q1 ⊗Q2)
⊤

Centring also has advantage in terms of identifiability and
interpretability



Application to hourly-recorded air-quality monitoring data

[Ishida and Bergsma, 2023]

▶ NO2 concentrations in London during from January 2020 to
May 2020 (for a period of 147 days covering the first
lockdown) collected from 59 monitoring stations

▶ Sample size > 200, 000

▶ 3 dimensional grid structure



Application to hourly-recorded air-quality monitoring data

▶ Saturated model with three-way interaction effect was the
best fit

▶ Under 20 minutes for MCMC sampling (Stan, 200+400
samples)

▶ A few seconds for marginal likelihood optimisation



Extensions

▶ Incomplete grid

▶ Possible to handle with MC-EM algorithm with Gibbs sampling
▶ Iterative algorithm for missing value imputation (grid

completion) and hyper-parameter estimation

▶ Additive Kronecker products naturally extends to models for
multivariate response
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