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Multi-dimensional grid /panel data
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Multi-dimensional grid/panel data
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And at each grid, we have an observation such as temperature,
air-quality levels etc.



Multi-dimensional grid/panel data

Three-dimension example: brain imaging

> Flexible statistical modelling e.g. incorporating spatial and
time dependence and its interaction

» Computational efficiency as the number of observations tends
to be large



Additive GP models

» For i =1,...,n, consider a regression model for a response
¥i € R and two predictors xj; € X7 and xp; € As:

yi = f(x1i, x2i) + €

with iid error €; ~ N(0,0?).
» Two model to consider
» Main effect model

f(x1i, x2i) = a+ fi(x1i) + h(x2i)
» |nteraction effect model
f(x1i, x0i) = a+ fi(x1j) + fh(xi) + fa(xai, x2i)

where a is constant



Statistical modelling through kernels
» Prior for each term given ki : X3 x X1 — R and
kl : XQ X X2 — R.

a~ N(0,1), 1~ GP(0,k1), fr~ GP(0,kz),
f12 ~ GP(O, kl X k2)

» Prior over f: f ~ GP(0, k) where k is defined on input space
X=X x Xy and given by k: X x X - R
» Main effect model

k(XaX/) =1+ kl(XlaX{) + kQ(X27Xé)
» Interaction effect model
k(x,x") =1+ ki(x1,x]) + ka(x2, 55) + ki(x1, x1 ) ka(x2, X5)

where x = (x1, %) € X



Statistical modelling through kernels

Alternatively,
f=(f(x1),...,f(x2))" ~ MVN(0,K)

where
» Main: K = 1,,1;,r + Ki + K>y
» Interaction: K = lnlz + K+ Ky +Ki oKy



ANOVA decomposition kernel

» With 2 variables, the interaction model is the saturated model
with saturated ANOVA decomposition kernel

k(x, X)) = (14 ki(x1, %)) (1 + ko(x2, x5))

[Wahba, 1990, Gu, 2002] for RKHS and [Stitson et al., 1999]
for SVM

» With d variables x = (x1,...,xq4) "

d

k(x,x") = H (1 + kI(XI,XI/))

=1

Includes 29 terms : constant term 1, main terms, all
interaction terms



Hierarchical ANOVA decomposition kernel
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1. Interaction terms — tensor product kernel

2. Interactions included with any main 4 lower-order interaction
terms



Main constraints

O(n%) time complexity and O(n?) memory requirement associated
with
1. Inverse of Covariance matrix and its multiplication with a

vector v
(K+021,) v

2. Log determinant
log |K + o1,



Kronecker products in Covariance matrix

When we have multi-dimensional grid data, Kronecker product
structure in K enables efficient evaluation of the above.
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» Interaction effect model (saturated):

K= (1,1, +Ki)® (1,1, +K>)

» Main effect model:

K=1,1 ® 1,721,,T2 + K ® lnzl;lr; + 1"11:1—1 ® K

n+m



Kronecker products in Covariance matrix

» Existing literature on Kronecker approach in GP handles a
limited number of models (separable kernel) including
» a saturated model
» a model with only the highest interaction

» Our contribution: flexible with any hierarchical ANOVA kernel



Efficient implementation using Kronecker products

Main goal: Decomposition of Gram matrix
K=(Q:®Q:)D(Q: ® Q2)"

where Qy is orthonormal, and D is diagonal with all non-negative
diagonal elements

1.

(K+021,) 'v=(Q1®Q2)(D + o) (Q: ® Q;) v

log |K + 02|n| = Z logDji + o
i

Time complexity: O(>" n?) or O(n>_ ny), memory: O(>" n?)



Eigendecomposition of K

Separable kernel

K= Rl & RZ
= (Q1A1Q1) ® (Q2A2Q7)
= (Q1® Q2)(A1® A2)(Q1 ®Q2)"

e.g.f(, =1,1! + K|

n=n



Eigendecomposition of K

Non-separable kernel such as

K=1,1" ©1,1 +K;®1,1! +1,1" @K,

ni+m n2+ny n2 +ny ni+m

Each term consists of Kronecker product of ln,II, and K;.



Eigendecomposition of K

. . . . 1
If each K| is centered using centering matrix C =1, — ;,1,,,1;;
P it has at least 1 zero eigenvalues, and

» all eigenvectors corresponding to non-zero (and positive)
eigenvalues are orthogonal to 1,

Eigendecomposition
> K, = Q/A/Q;r with

Ay =diag(0,\2, ..., \p,)

Q=71 @ . ay

> 1,1 = Q/A/Q;r with

n=n

A, = diag(n;,0,...,0)



Eigendecomposition of K

For centered K; and Ko,

Q:A:1Q]  QAQ;) Q:A1Q] Q:A2Q]
/-/\? f-/\? =~ T T ~=
K= 1”11n1 ® 1’721!12 + K]- ®1”21"2 + 1”11’71 ® K2

=(Q2Q)(AIRA+AIRA +A; @A) Q12 Q)T

diagonal

Centring also has advantage in terms of identifiability and
interpretability



Application to hourly-recorded air-quality monitoring data

[Ishida and Bergsma, 2023]

» NO, concentrations in London during from January 2020 to
May 2020 (for a period of 147 days covering the first
lockdown) collected from 59 monitoring stations

» Sample size > 200, 000

» 3 dimensional grid structure
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Application to hourly-recorded air-quality monitoring data

» Saturated model with three-way interaction effect was the

best fit

» Under 20 minutes for MCMC sampling (Stan, 2004400

samples)

> A few seconds for marginal likelihood optimisation

Pre-lockdown

Weekdays

Y Weekend
2 clear peaks

20

0
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40 Mon Tue Wed Thu Fri Sat  Sun

Jan27 Jan28 Jan29 Jan30 Jan31 FebO1 Feb02 Feb03
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Week 11 of lockdown

May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00



Extensions

» Incomplete grid

» Possible to handle with MC-EM algorithm with Gibbs sampling
> lterative algorithm for missing value imputation (grid
completion) and hyper-parameter estimation
» Additive Kronecker products naturally extends to models for
multivariate response
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