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Regression with additive Gaussian process priors

▶ For a response variable yi ∈ R, p-dimensional predictors
xli ∈ Xl l = 1, . . . , p and i = 1, . . . , n:

yi = f (x1i , . . . , xpi ) + ϵi (1)

(ϵ1, . . . , ϵn)
⊤ ∼ N(0,Σ)

▶ Assume additive structure on f e.g., for p = 3,

f (x1i , x2i , x3i ) = a+ f1(x1i ) + f2(x2i ) + f3(x3i )︸ ︷︷ ︸
main effect

(2)

+ f12(x1i , x2i ) + f23(x2i , x3i ) + f13(x1i , x3i )︸ ︷︷ ︸
two-way interaction effect

+ f123(x1i , x2i , x3i )︸ ︷︷ ︸
three-way interaction effect

▶ Assume fj ∼ GP(0, kj) for j ∈ {1, 2, 3, 12, 13, 23, 123}.



Challenges and contributions of the thesis

▶ Large number of terms to consider and parameters to
estimate, especially for l ≥ 3
▶ Additive interaction modelling with ANOVA decomposition

kernel: Parsimonious specification which makes model fitting,
comparison, and interpretation easier

▶ Implementation of additive GP models for large-scale data
Focusing on multi-dimensional grid data and exploiting
Kronecker product structure in the model covariance matrix
(Kroncker method)
▶ Extending the Kronecker method to some cases of the sum of

separable kernels, which covers non-saturated interaction
models

▶ Handling incomplete grid data (Ongoing)



Regression with Gaussian process prior

1D example:

▶ For i = 1, ..., n, consider a regression model for a response
yi ∈ R and a predictor xi ∈ X :

yi = f (xi ) + ϵi

with iid error ϵi ∼ N(0, σ2).

▶ Prior over f : f ∼ GP(0, k) where k : X × X → R is called
kernel and serves as a covariance function

cov[f (x), f (x ′)] = k(x , x ′)

▶ Different kernel leads to different properties of the function f
(Linearity, smoothness, etc.)

▶ Each kernel has some parameters (hyper-parameters) denoted
by θ



Regression with Gaussian process prior

▶ Posterior is also a GP with mean and kernel

m̄(x) = k(x)⊤(K+ σ2I)−1y, x ∈ X (3)

k̄(x , x ′) = k(x , x ′)− k(x)⊤(K+ σ2I)−1k(x ′), x ,x ′∈ X (4)

where

{K}1≤i ,j≤n = k(xi , xj)

k(x) = (k(x , x1), . . . , k(x , xn))
⊤

▶ Hyper-parameter estimation
▶ Put hyper-prior on θ and use MCMC, or
▶ Optimising log marginal likelihood

log p(y|θ) = −1

2
y⊤(K+ σ2In)

−1y − 1

2
log |K+ σ2In|+ c .
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Additive interaction modelling with a GP prior

Two variable example

▶ For i = 1, ..., n, consider a regression model for a response
yi ∈ R and two predictors x1i ∈ X1 and x2i ∈ X2:

yi = f (x1i , x2i ) + ϵi

with iid error ϵi ∼ N(0, σ2).
▶ Two model to consider

▶ Main effect model

f (x1i , x2i ) = a+ f1(x1i ) + f2(x2i )

▶ Interaction effect model

f (x1i , x2i ) = a+ f1(x1i ) + f2(x2i ) + f12(x1i , x2i )

where a is constant



Statistical modelling through kernels

▶ Prior for each term given k1 : X1 ×X1 → R and
k1 : X2 ×X2 → R.

a ∼ N(0, 1), f1 ∼ GP(0, k1), f2 ∼ GP(0, k2),

f12 ∼ GP(0, k1 ⊗ k2)

▶ Prior over f : f ∼ GP(0, k) where k is defined on input space
X = X1 ×X2 and given by k : X × X → R
▶ Main effect model

k(x , x ′) = 1 + k1(x1, x
′
1) + k2(x2, x

′
2)

▶ Interaction effect model

k(x , x ′) = 1 + k1(x1, x
′
1) + k2(x2, x

′
2) + k1(x1, x

′
1)k2(x2, x

′
2)

where x = (x1, x2)
⊤ ∈ X



Statistical modelling through kernels

Alternatively,

f = (f (x1), . . . , f (xn))
⊤ ∼ MVN(0,K)

where

▶ Main:
K = 1n1

⊤
n +K1 +K2

▶ Interaction:

K = 1n1
⊤
n +K1 +K2 +K1 ◦K2

= (1n1
⊤
n +K1) ◦ (1n1⊤n +K2)



ANOVA decomposition kernel

▶ With 2 variables, the interaction model is the saturated model
with saturated ANOVA decomposition kernel

k(x , x ′) = α2
0

(
1 + k1(x1, x

′
1)
) (

1 + k2(x2, x
′
2)
)

Multiplied by the overall scale parameter α2
0, so that

a ∼ N(0, α2
0).

▶ With d variables x = (x1, . . . , xd)
⊤

k(x , x ′) = α2
0

d∏
l=1

(
1 + kl(xl , x

′
l )
)

Includes 2d terms: constant term, main terms, all interaction
terms



Hierarchical ANOVA decomposition kernel

1. Interaction terms – tensor product kernel

2. Interactions included with any main + lower-order interaction
terms



Related work

▶ Functional ANOVA decomposition, Smoothing Spline (SS)
ANOVA [Wahba et al., 1995]
Regression function decomposed in a similar manner as (2),
but each term has its own coefficient

▶ ANOVA kernel for Support Vector Machine
[Stitson et al., 1999]

(a) One-way (b) Two-way (c) Three-way (d) Four-way



Related work

▶ Functional ANOVA decomposition, Smoothing Spline (SS)
ANOVA [Wahba et al., 1995]
Regression function decomposed in a similar manner as (2),
but each term has its own coefficient

▶ Additive Gaussian process models considered in
[Duvenaud et al., 2011]

(a) One-way (b) Two-way (c) Three-way (d) Four-way



Additive interaction modelling with a GP prior

Merits

▶ Hierarchical interaction models give a better fit compared to
the model that only accounts for the highest-order interaction

▶ Parsimonious specification :
▶ A smaller number of parameters to estimate compared to

classical linear regression or SS ANOVA model.
▶ Model selection using log predictive density

▶ Interpretability: the additive model structure allows for
visually interpreting each effect, which is enhanced with kl
being empirically centred.

▶ Computation: efficient implementation of the proposed model
possible for multi-dimensional grid data



Parsimonious specification

Given a set of predictors, all models of any interaction structures
share the same set (and number) of parameters

▶ The different interaction models Mk can be compared using
”plug-in” log marginal likelihood / best fit joint predictive
density: log p(y|θ̂,Mk)

▶ Less costly compared to other criteria, such as
▶ Marginal likelihood :

p(y|M) =

∫
p(y|θ,Mk)p(θ|Mk)dθ (5)

▶ LOOCV: 1
n

∑n
i=1 log p(yi |y−i ,Mk) where

p(yi |y−i ,Mk) =

∫
p(yi |θ,Mk)p(θ|y−i ,Mk)dθ

Does not require fitting the model n times, but some
importance sampling procedure needed to approximate the
above



Parsimonious specification

▶ DIC and WAIC are other alternatives but require evaluating
log p(y|θs) or log p(yi |θs) where θs is s-th sample from its
posterior distribution.

▶ A simulation study with 3 variable interaction models show
both the best fit predictive density (plug-in marginal
likelihood) or marginal likelihood (5) choose the correct
model.

▶ Still requires fitting all candidate models - the model selection
is not automated.



Interpretability

The result can be interpreted by plotting the posterior mean

▶ Posterior mean decomposition: for additive models with
f =

∑
j fj and priorss fj ∼ GP(0, kj)

m̄j(xj) = kj(xj)
⊤(K+ σ2I)−1y, xj ∈ Xj

for j ∈ J where e.g. J = {0, 1, 2, 3, ..., 12, 13, 23, ...}
▶ To interpret the two-way interaction (e.g.,between x1 and x2)

effect, plot
m̄1(x1) + m̄12(x1, x

∗
2 )

as function of x1, at different value of x∗2
▶ The same principle applies to higher-order interactions

▶ Possible to intuitively understand the effect of lower-order
interaction (including the main effect) if kernels are centred.



Interpretability

Centring of kernels

▶ Any p.d. kernel can be centred by

kcent(x , x) = k(x , x ′)−E[k(x ,X ′)]−E[k(X , x ′)]+E[k(X ,X ′)]

where X ,X ′ ∼ P.

▶ Empirical centring using centring matrix C = In − 1
n1n1

⊤
n

K(c) = CKC

▶ All columns and rows sum to zero
▶ Ensures

∑
f (xi ) = 0

▶ For a linear kernel k(x , x ′) = x⊤x ′, or, K = XX⊤, it is
equivalent to centring the covariates by Xcent = CX



Interpretability

▶ When kernels are centred, each mean function sums to zero
over each input, e.g.,

n∑
i=1

m̄1(x1i ) = 0,
n∑

i=1

m̄12(x1, x2i ) = 0.

▶ The lower-order interaction can be seen as the averaged effect

1

n

n∑
i=1

{m̄1(x1) + m̄12(x1, x2i )} = m̄1(x1) +
n∑

i=1

m̄12(x1, x2i )︸ ︷︷ ︸
=0

= m̄1(x1)



Intepretability

Example with cattle growth longitudinal data

Figure: The observed and fitted growth curve over 133 days of 60 cattle
by treatment group



Intepretability

Three-way interaction model:

y = f (day , id , group) + ϵ

where

f (day , group, id) = a+ f1(day) + f2(group) + f3(id)

+ f12(day , group) + f13(day , id) + f23(group, id)

+ f123(day , group, id)



Intepretability

(a) m̄1(day) (b) m̄1(day) + m̄12(day , group)

Figure: Average centred growth curve
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Multi-dimensional grid/panel data

Inputs are on Cartesian grid, e.g.,

▶ At each grid, we have an observation such as temperature,
air-quality levels, etc.

▶ The grid needs not be equispaced

▶ Tensor time series



Multi-dimensional grid/panel data

Three-dimension example: brain imaging



Main constraints

O(n3) time complexity and O(n2) memory requirement associated
with

1. Inverse of Covariance matrix and its multiplication with a
vector v (

K+ σ2In
)−1

v

2. Log determinant
log |K+ σ2In|



Kronecker products in Covariance matrix

When we have multi-dimensional grid data, Kronecker product
structure in K enables efficient evaluation of the above.

▶ Interaction effect model (saturated):

K = (1n11
⊤
n1 +K1)⊗ (1n21

⊤
n2 +K2)

▶ Main effect model:

K = 1n11
⊤
n1 ⊗ 1n21

⊤
n2 +K1 ⊗ 1n21

⊤
n2 + 1n11

⊤
n1 ⊗K2



Kronecker products in Covariance matrix

▶ Existing literature on the Kronecker approach in GP handles a
limited number of models (separable kernel), including
▶ a saturated model
▶ a model with only the highest interaction

(a) Main (b) Hierarchical (c) Saturated (d) Tensor

▶ Our contribution: flexible with any hierarchical ANOVA kernel



Efficient implementation using Kronecker products

Main goal: Decomposition of Gram matrix

K = (Q1 ⊗Q2)D(Q1 ⊗Q2)
⊤

where Ql is orthonormal, and D is diagonal with all non-negative
diagonal elements

1. (
K+ σ2In

)−1
v = (Q1 ⊗Q2)(D+ σ2I)−1(Q1 ⊗Q2)

⊤v

Note (Q1 ⊗Q2)
⊤v = vec(Q⊤

2 VQ1) where V = vec−1(v)

2.
log |K+ σ2In| =

∑
i

logDii + σ2

Time complexity: O(
∑

n3l ) or O(n
∑

nl), memory: O(
∑

n2l )



Eigendecomposition of K

Separable kernel

K = K̃1 ⊗ K̃2

= (Q1Λ1Q
⊤
1 )⊗ (Q2Λ2Q

⊤
2 )

= (Q1 ⊗Q2)(Λ1 ⊗Λ2)(Q1 ⊗Q2)
⊤

e.g.K̃l = 1nl1
⊤
nl
+Kl



Eigendecomposition of K

A special case of the sum of separable kernels such as

K = 1n11
⊤
n1 ⊗ 1n21

⊤
n2 +K1 ⊗ 1n21

⊤
n2 + 1n11

⊤
n1 ⊗K2

▶ Each term consists of Kronecker product of 1nl1
⊤
nl

and Kl .

▶ Do they share the same orthonormal basis?



Eigendecomposition of K

If each Kl is centered using centering matrix C = Inl − 1
nl
1nl1

⊤
nl

▶ it has at least 1 zero eigenvalues, and

▶ all eigenvectors corresponding to non-zero (and positive)
eigenvalues are orthogonal to 1nl

Eigendecomposition

▶ Kl = QlΛlQ
⊤
l with

Λl = diag(0, λ2, . . . , λnl )

Ql =

 1√
nl
1nl q2 . . . qnl


▶ 1nl1

⊤
nl
= QlAlQ

⊤
l with

Al = diag(nl , 0, . . . , 0)



Eigendecomposition of K

If each Kl is centered using centering matrix C = Inl − 1
nl
1nl1

⊤
nl

▶ it has at least 1 zero eigenvalues, and

▶ all eigenvectors corresponding to non-zero (and positive)
eigenvalues are orthogonal to 1nl

Eigendecomposition

▶ Kl = QlΛlQ
⊤
l with

Λl = diag(0, λ2, . . . , λnl )

Ql =

 1√
nl
1nl q2 . . . qnl


▶ 1nl1

⊤
nl
= QlAlQ

⊤
l with

Al = diag(nl , 0, . . . , 0)



Eigendecomposition of K

For centered K1 and K2,

K =

Q1A1Q⊤
1︷ ︸︸ ︷

1n11
⊤
n1 ⊗

Q2A2Q⊤
2︷ ︸︸ ︷

1n21
⊤
n2 +

Q1Λ1Q⊤
1︷︸︸︷

K1 ⊗1n21
⊤
n2 + 1n11

⊤
n1 ⊗

Q2Λ2Q⊤
2︷︸︸︷

K2

= (Q1 ⊗Q2) (A1 ⊗ A2 +Λ1 ⊗ A2 + A1 ⊗Λ2)︸ ︷︷ ︸
diagonal

(Q1 ⊗Q2)
⊤



Application to hourly-recorded air-quality monitoring data

▶ NO2 concentrations in London during from January 2020 to
May 2020 (for a period of 147 days covering the first
lockdown) collected from 59 monitoring stations

▶ Sample size > 200, 000

▶ 3 dimensional grid structure



Application to hourly-recorded air-quality monitoring data

▶ Saturated model with three-way interaction effect was the
best fit

▶ Under 20 minutes for MCMC sampling (Stan, 200+400
samples)

▶ A few seconds for marginal likelihood optimisation

Figure: Plot of m̄3(hour of the day) + m̄13(hour of the day, day number)



Other scalable approaches

▶ Toeplitz method: similar to Kronecker’s as it exploits the data
structure
▶ The input has to be uni-dimensional and equispaced.
▶ Only stationary kernel can be used

so that the Gram matrix is constant along its diagonal
▶ Sparse GP with inducing points of length m < n, then the

costly matrix inversion and matrix-vector multiplication
involve these inducing points only.
▶ Approximation method while Kronecker method is exact
▶ How to choose inducing points?

▶ Combination of sparse GP with Kronecker method by
imposing grid structure in inducing point
[Wilson and Nickisch, 2015]



Extensions

Adding random effect on each level to relax iid error assumption,
e.g., error term eij = ui + vj + ϵij where ui ∼ N(0, σ2

u) and
vj ∼ N(0, σ2

v )

(e11, e12, . . . , en1n2)
⊤ ∼ N(0,Σ)

where

Σ = σ2
uIn1 ⊗ 1n21

⊤
n2 + σ2

v1n11
⊤
n1 ⊗ In2 + σ2In1 ⊗ In2

The same orthonormal matrices Ql can be used for the
decomposition, given Kl is centred.



Extensions

Incorporating p ≪ n dimensional cross-level covariates denoted by
zij

yij = z⊤ij β + f (x1i , x2j) + ϵij

with β ∼ N(0,B). Then the model covariance matrix is

ZBZ⊤ +K+ σ2In

and the inverse (and matrix-vector multiplication) and determinant
can still be computed in O(pn

∑
nl) detail

▶ If the effect of z interacts with x , this is not the case



Limitations

▶ Forecasting:
kernels are centred using the observed x1, . . . , xn, not suited
when the main aim is forecasting.

▶ Kernel sum and product at one level:
if the base kernel kl consists of multiple kernels e.g.
kl = 1 + kl1 + kl2 or kl = 1 + kl1 + kl2 + kl1 ⊗ kl2, not all
interaction models can be handled within the proposed
framework.

▶ Incomplete grid:
most repeated measurements and longitudinal data are with
missing values
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Extention to incomplete grid

▶ Incomplete grid

▶ The work of [Gilboa et al., 2013] addresses this issue, but it is
an approximation to a complete case analysis; hence does not
work well the cases where the missingness is not at random.

▶ Possible to handle with stochastic EM algorithm with Gibbs
sampling



Approximation to complete case analysis

Some notations

▶ yobs (length n):the observed part

▶ yms (length m): the missing part of the response

▶ ỹ = (y⊤obs , y
⊤
ms)

⊤ which is of length N = n +m

Similar notation for Xobs ,Xms and X for the input. To evaluate

log p(yobs |θ) = −1

2
y⊤obs(Knn + σ2In)

−1yobs︸ ︷︷ ︸
term 1

−1

2
log |Knn + σ2In|︸ ︷︷ ︸

term 2

+c

▶ Term 1: fill yms with ”imaginary” observations and

ỹ⊤(KNN + σ2D)−1ỹ → term 1 as w → 0

where

D =

(
σ2In 0nm
0⊤nm w−1Im

)
.



Approximation to complete case analysis

▶ Term 2 can be approximated by

log |Knn + σ2In| ≈
n∑

i=1

log(λ̃n
i + σ2)

where λ̃n
i = n

Nλ
N
i for i = 1, . . . , n, and λN

1 , . . . , λ
N
n are the n

largest eigenvalues of the Gram matrix KNN

▶ Similar procedure for computing posterior mean and
covariance of yms |yobs



Approximation to complete case analysis

(a) MCAR (b) MAR (c) MNAR

Figure: Three missing data mechanisms for the synthetic data with the
grid size 70× 70 and the missing proportion 30%.

simulation

EM for MNAR
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Incorporating cross-level covariates

Let
K̃ = ZBZ⊤ +K+ σ2In︸ ︷︷ ︸

Kσ

Using Woodbury matrix identity and matrix determinant lemma,
we have

K̃−1 = K−1
σ −K−1

σ Z(B−1 + Z⊤K−1Z)−1Z⊤K−1

log |K̃| = log |B−1 + Z⊤K−1Z|+ log |Kσ|+ log |B|

back



Simulation study

MCAR MAR MNAR
10% 20% 30% 10% 20% 30% 10% 20% 30%

σ̄ 1.5 1.49 1.49 1.5 1.5 1.5 1.45 1.43 1.42
RMSE-σ 0.02 0.02 0.023 0.018 0.017 0.019 0.051 0.074 0.085
RMSE-f 0.16 0.17 0.18 0.17 0.19 0.22 0.73 0.89 1.01
Time(s) 138 146 141 111 110 104 155 147 141

Table: RMSEs for the parameters and for missing grid. Running time is
measured in seconds. The synthetic data with 70× 70 grid size. For each
scenario, the experiment is repeated 20 times.



EM algorithm for incomplete grid with
missing-not-at-random cases

▶ Objective function for EM algorithm

Q(θ|θt−1) =

∫
log p(yobs , yms |θ)p(yms |yobs , θt−1)dyms

▶ Directly evaluating above is costly, especially for large m.

▶ Numerical approximation can be used, but sampling from
p(yms |yobs , θt−1) iss another challenge.



Stochastic EM algorithm with Gibbs sampling

The conditional distribution

p(yms |yobs , θt−1) = MVN(µ(θt−1),Σ(θt−1))

where

µ(θt−1) = Kmn(Knn + σ2In)
−1yobs

Σ(θt−1) = Kmm −Kmn(Knn + σ2In)
−1Knm

▶ To take advantage of the d-dimensional grid structure
(Knn +σ2In)−1Knm can be replaced by (KNN +D)−1KNm and
computed using conjugate gradient (CG) descent algorithm

▶ This takes O(m(m+1)
2 JN

∑d
l=1 nl) where J is the number of

iterations needed for the CG descent algorithms.



Stochastic EM algorithm with Gibbs sampling

Sampling from a univariate normal distribution
▶ At t-th iteration,

1. Sample y t
ms(1)|yobs , y

t−1
ms(2), y

t−1
ms(3), . . . from N(µt

(1), σ
t
(1)) where

µt
(1) = αt⊤

ms(1)ỹ−ms(1)

σt
(1) = k(xms(1), xms(1))−αt⊤

ms(1)k(xms(1))

where ỹ−ms(1) = (yobs , y
t−1
ms(2), y

t−1
ms(3), . . .) and

αt
ms(1) = (KN−xms(1),N−xms(1)

+ σ2IN−1)
−1k(xms(1))

can be computed efficiently using a rank 2 update of
(KNN + σ2IN)−1.

2. Sample y t
ms(2)|yobs , y

t
ms(1), y

t−1
ms(3), . . . from N(µt

(1), σ
t
(1))

3.
...



Stochastic EM with Gibbs sampling

Merits

▶ Efficiency: O(4mN
∑d

l=1 nl) instead of O(m(m+1)
2 JN

∑d
l=1 nl)

Generally 4m << m(m+1)
2 J

▶ Incorporating missingness mechanism e.g., yms(j) > c for some
constant c can be ensured in the sampling step.
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