Monitoring Food Insecurity using population non-representative survey

Sahoko Ishida

Department of Computer Science
University of Oxford

TIES 2024

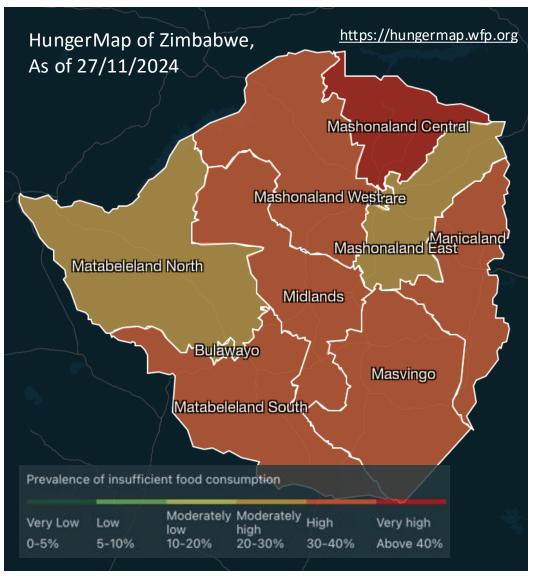
- Dr. Adam Howes, Dr. Elizaveta Semenova (Imperial College London)
- Dr. Valerie Bradley, Prof. Seth Flaxman (University of Oxford)
- Prof. Dino Sejdinovic (University of Adelaide)
- WFP Rome Hunger Monitoring Unit, Forecasting and Early Warning System
- WFP Zimbabwe
- And many more!

SMALL AREA DISAGGREGATION OF ZIMBABWE HUNGERMAP DATA

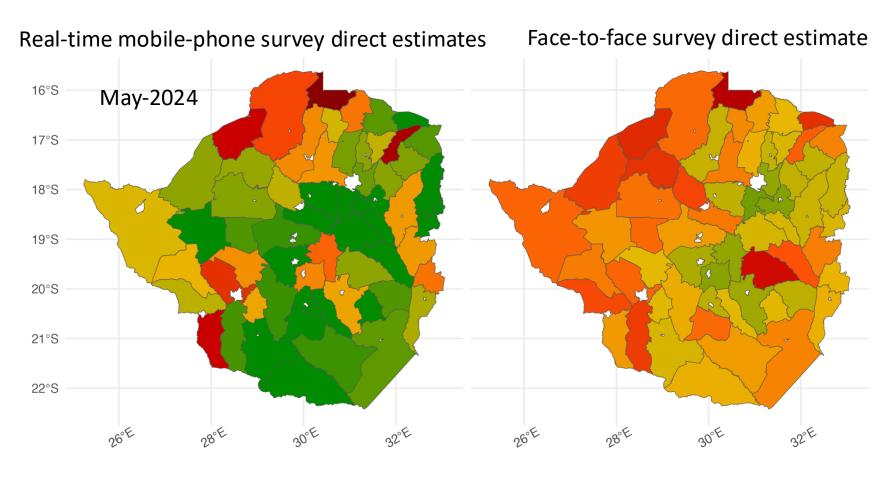
- **HungerMap:** WFP's main real-time monitoring survey and tool
 - Mobile phone survey, running in many countries Africa, South America, South (East) Asia
 - Collects data on household food consumption
 - n ≈ 1000 to ensure monthly representativeness at the **province** level

Challenges

- Decision making often made at the district level
- Phone surveys prone to biases: sampling bias, modality bias
- Face-to-face (F2F) survey representative at district level too costly to run frequently (once a year in Zimbabwe's case)

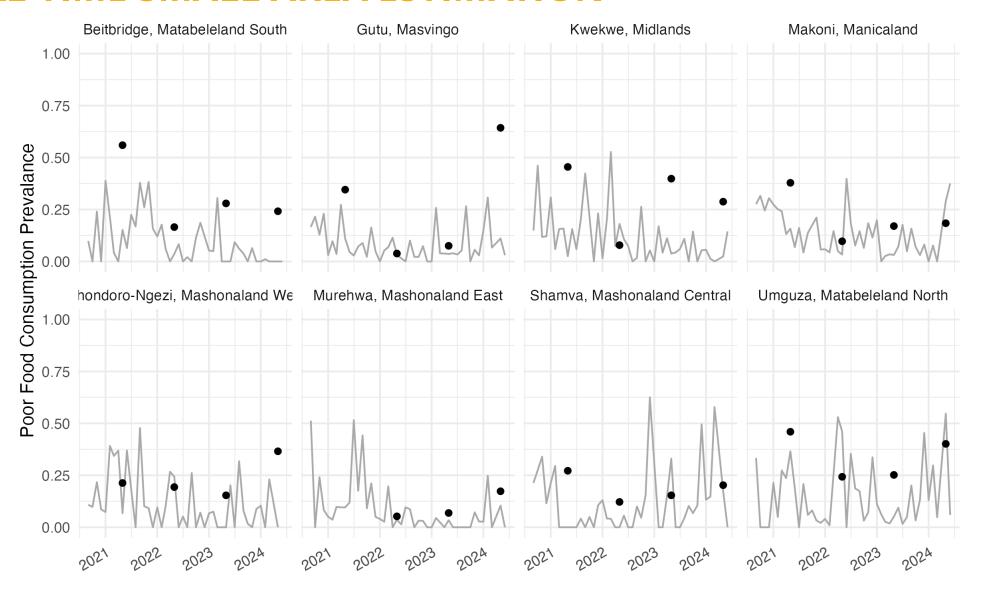


AIMS - REAL-TIME SMALL AREA ESTIMATION



REAL-TIME SMALL AREA ESTIMATION

F2F survey estimate (ground truth)
 Mobile-phone direct estimates



OUR APPROACH TO (REAL-TIME) SMALL AREA ESTIMATION

Bayesian spatio-temporal smoothing SAE model (Multi-level Regression)

Spatio-temporal random effects

Household level auxilirally variables (sociodemographic)

Jointly fitted to both real-time mobile phone survey and F2F survey

Mobile-phone data: high temporal resolution

F2F data spatially rich

Controls for modality bias

Post-stratification

"Population-frame" representative at the district level

Prediction at each cells in the frame & weighted aggregation

MRP [Park et al. (2004)]

Bayesian spatio-temporal smoothing at household level

Modelling $p = p(Food\ Consumption\ Score(FCS) < c)$ at household level

$$logit(p) = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\theta}_{s} + \boldsymbol{\nu}_{t} + \boldsymbol{\psi}_{rt}$$

- Main spatial random effects: θ_s for district s=1,...S BYM, BYM2, GP
- Main temporal random effects: v_t for time t=1,...TCombination of Random Walk of order 1 and i.i.d normal
- Spatio-temporal **interaction** random effects: ψ_{rt} for time t=1,...T and province r=1,...R
- i.i.d normal, can be replaced with tensor product of spatially and temporally structured prior

Bayesian spatio-temporal smoothing at household level

Modelling $p = p(Food\ Consumption\ Score(FCS) < c)$ at household level

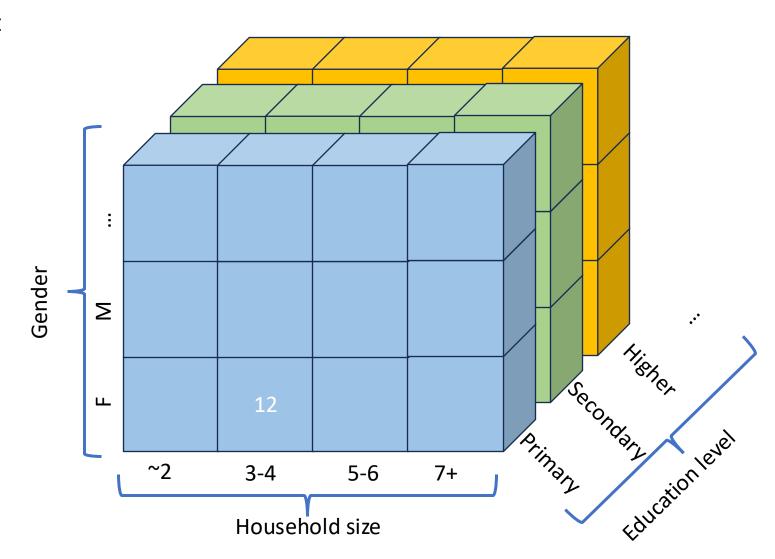
$$logit(p) = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\theta}_{s} + \boldsymbol{\nu}_{t} + \boldsymbol{\psi}_{rt}$$

- 6 household-level covariates from survey all categorical
 Head of Household education, sex / Household size / access to safe water
 sources / toilet types / phone ownership
- Survey type (mobile-phone / F2F) we let the effect of household-level covariates differs for different surveys
- Similar to a smoothing model commonly seen in model-based unit-level small area estimation

Post-stratification

- Construct population frame (tensor) at each district s
- Each cell j reflecting the relative frequency n_j^s , given a combination of auxiliary variables, e.g.

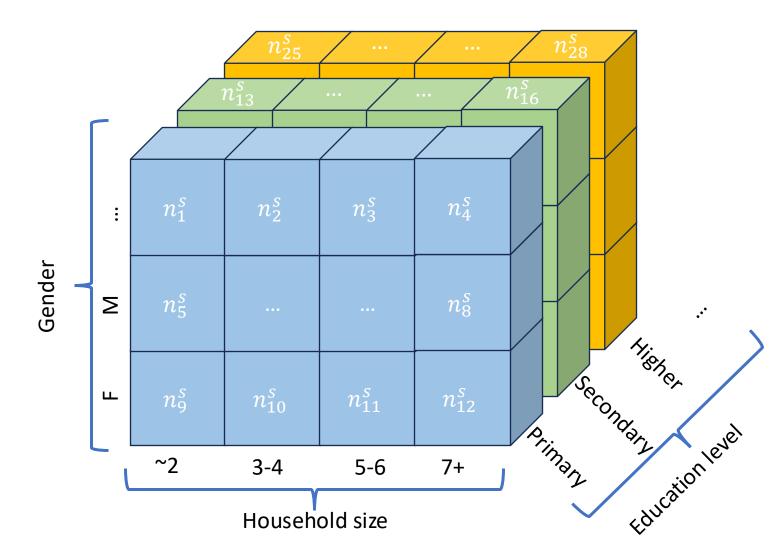
(Gender = F) X (Household size = 3) X (Education level = Primary)



Post-stratification

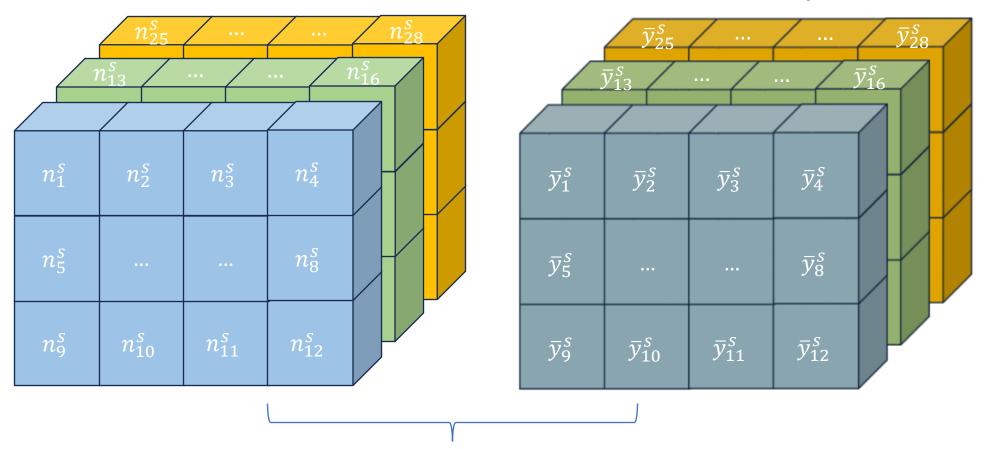
- Construct population frame (multidimensional tensor) for each district s
- Each cell j reflecting the relative frequency n_j^s of a specific subgroup in the population, e.g.,

(Gender = F) X (Household size = 3) X (Education level = Primary)



Population frame for district *s*

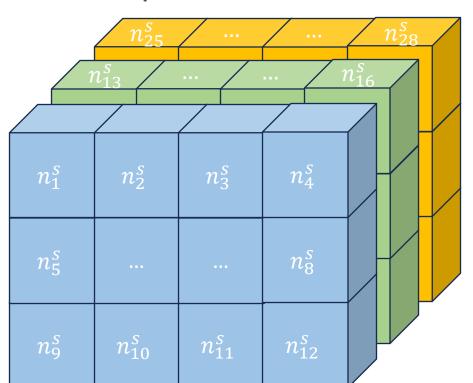
A frame of sample mean for district *s*



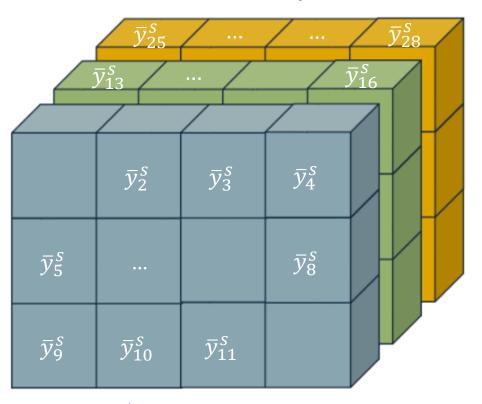
Estimates of prevalence for district s

$$\hat{p}_{S} = \frac{\sum_{j} n_{j}^{S} \overline{y_{j}}^{S}}{\sum_{j} n_{j}^{S}}$$

Population frame for district *s*



A frame of sample mean for district *s*



Estimates of prevalence for district *s*

$$\hat{p}_s = \frac{\sum_j n_j^s \, \hat{p}_j^s}{\sum_j n_j^s}$$

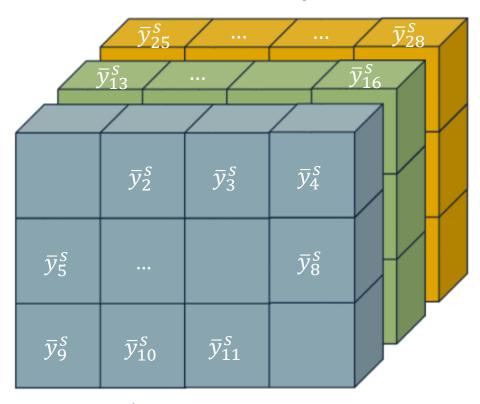
- Number of cells could be thousands, hence some cells might have very few or no observations
- Use predicted values instead

Population frame for district *s*

n_{25}^{S} n_{28}^{S} n_{13}^{S} n_{16}^{S} n_{1}^{S} n_{2}^{S} n_{3}^{S} n_{4}^{S}

 n_{12}^{s}

A frame of sample mean for district *s*



- The weights can be calibrated to ensure that n_i^s is not too small/large
- If no survey/census available to get joint distribution, raking ratio estimation can be used. Only marginal totals/proportion required

Estimates of prevalence for district *s*

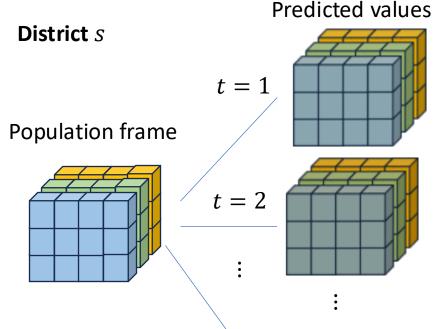
$$\hat{p}_{s} = \frac{\sum_{j} \widehat{w}_{j}^{s} \widehat{p}_{j}^{s}}{\sum_{j} \widehat{w}_{j}^{s}}$$

Real-time monitoring

• We assume that the weights (set of w_j^s) do not change for the period of our study, and only the predicted values (set of \hat{p}_i^s) evolve over time

MRP-SAE for district s at time t

$$\hat{p}_{st} = \frac{\sum_{j} \hat{w}_{j}^{s} \hat{p}_{j}^{st}}{\sum_{j} \hat{w}_{j}^{s}}$$



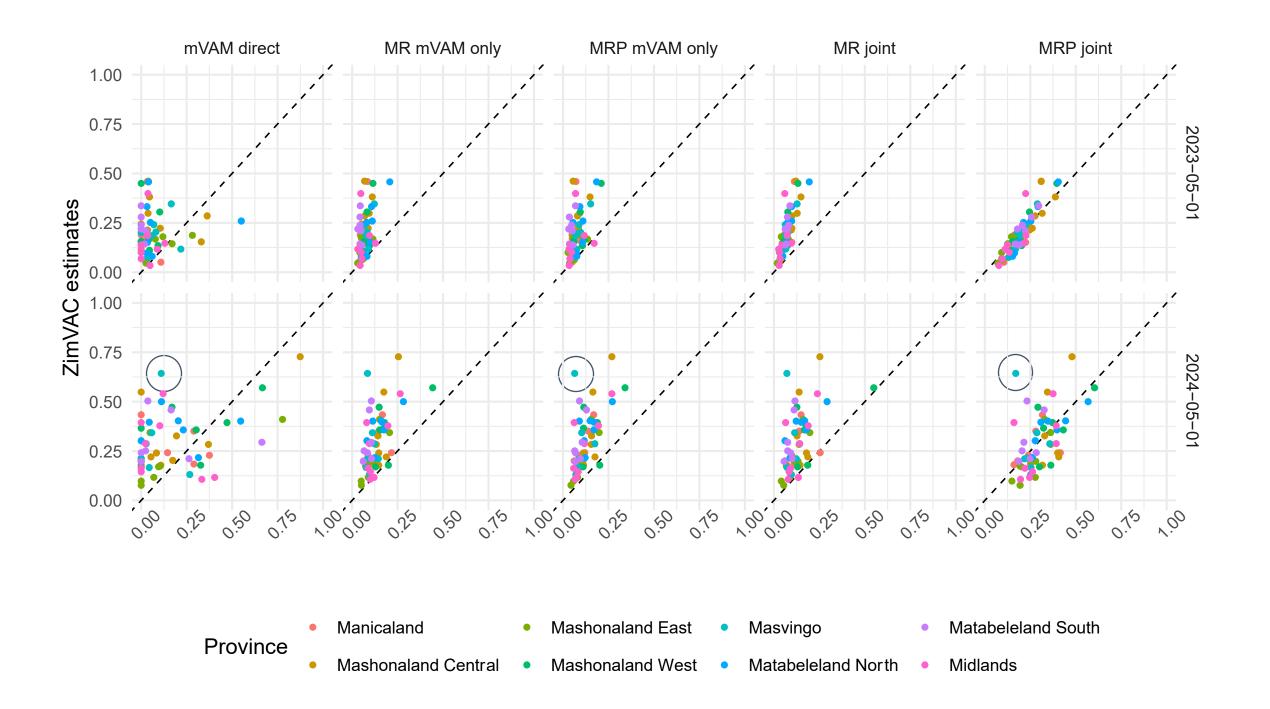
- Now-casting attempt, aiming to get reliable estimates of the prevalence by
 - 1. Using temporally sparse but representative at granular district level
 - 2. To correct for bias and variance of real-time phone survey data (updated every day)

Application - Zimbabwe

- 8 provinces and 90> districts focuses on 61 rural districts
- Data source
 - Mobile Vulnerability Analysis and Mapping (mVAM) survey
 - The number of respondents is $n_r \approx 150$ per province per month
 - Our study period September 2020 June 2024 (Ongoing),
 - Data collected daily total of 43, 139 obserbations
 - Zimbabwe Vulnerability Assessment Committee (ZimVAC) rural survey
 - F2F survey conducted every annually (May)
 - The number of respondents for the month of study is $n_s \approx 250$ per district
 - We have access to 2023 and 2024 data at household level,
 - Zimbabwe 2015 Demographic and Health Survey (DHS) and Census 2022
 - Only needed for constructing population frame by estimating weights (raking)

Validation

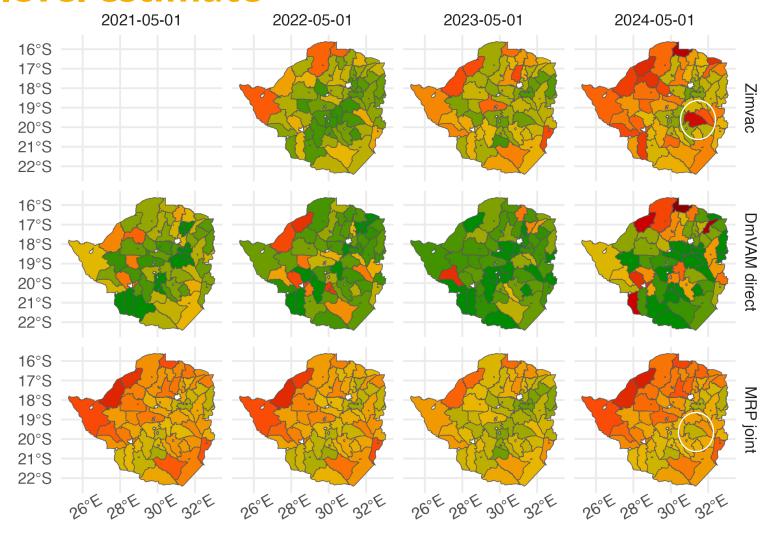
- Validating against ground truth Zimvac (F2F) survey direct estimate
 - mVAM Direct Estimates (real-time mobile-phone survey)
 - mVAM survey smoothing model (no F2F survey data is included in model fitting)
 - MR estimates: Bayesian (multi-level) spatio-temporal smoothing + simple aggregation
 - MRP estimates: Bayesian (multi-level) spatio-temporal smoothing + post stratification
 - Poststratification weights are estimated using census 2022 margins and dhs 2015
 - Joint model (Mobile-phone survey and 2023 F2F survey)
 - MR estimates
 - MRP estimates
 - Poststratification weights are computed from Zimvac 2023 survey
- In-sample error using the 2023 survey and out-of-sample error using the 2024 survey



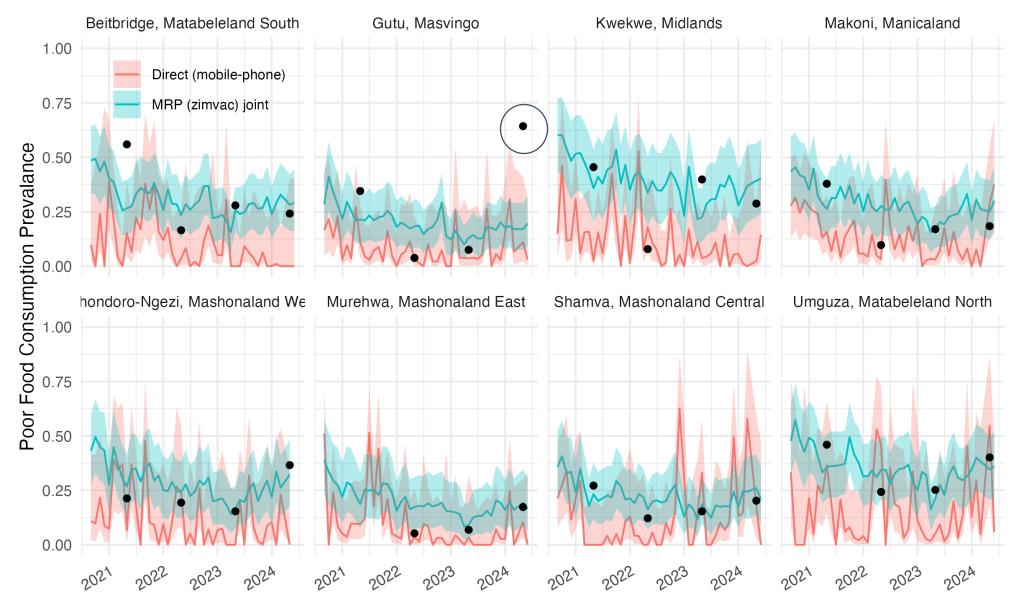
Validation

Year	Method	Pearson	CCC	MAE	Bias	Coverage90	CI_length90
2023	mVAM direct	0.051	0.028	0.159	-0.131	0.900	0.321
	MR mVAM only	0.480	0.110	0.127	-0.127	0.683	0.191
	MRP mVAM only	0.490	0.146	0.124	-0.123	0.583	0.142
	MR joint	0.827	0.203	0.128	-0.128	0.700	0.181
	MRP joint	0.907	0.854	0.037	0.000	0.983	0.195
2024	mVAM direct	0.333	0.248	0.210	-0.127	0.900	0.428
	MR mVAM only	0.574	0.212	0.162	-0.161	0.750	0.325
	MRP mVAM only	0.635	0.206	0.171	-0.171	0.467	0.184
	MR joint	0.519	0.215	0.163	-0.161	0.733	0.324
	MRP joint	0.525	0.484	0.093	0.005	0.933	0.279

District-level estimate



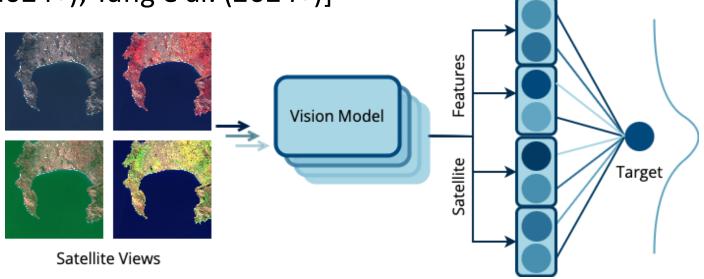
Now-casting



Future & ongoing work

- Forecasting, higher time resolution (from monthly to weekly)
- Climate variables and economic, socio, and political variables
 - Readily available / processed data
 - Extracting richer representations from satellite imagery
 - Pre-trained computer vision models such as DINOv2

• Applied in the context of estimating child poverty [Sharma et al.(2024+), Yang e al. (2024+)]



Future & ongoing work

 Adaptive learning survey design (A-LDS): new survey design using active learning technique to increase effective sample size of the real-time monitoring survey and better representation of marginalized population

ADAPTIVE LEARNING SAMPLING DESIGN (A-LSD) IN ZIMBABWE

- 1. Oct 18-Nov 14 2023: stratified random sample: province x water source x toilet type
- 2. Nov 28-Dec 4:
- 3. Dec 8-14:
- Dec 18-24 2023:

active learning to prioritize random sample: stratify by urban/rural and gender active learning to prioritize random sample: stratify by urban/rural and gender active learning to prioritize random sample: stratify by urban/rural and gender

Reference

Yang, F., Ishida, S., Zhang, M., Jenson, D., Mishra, S., Navott, J., & Flaxman, S. (2024). Uncertainty-Aware Regression for Socio-Economic Estimation via Multi-View Remote Sensing. arXiv preprint arXiv:2411.14119.

Sharma, M., Yang, F., Vo, D. N., Suel, E., Mishra, S., Bhatt, S., ... & Flaxman, S. (2024). KidSat: satellite imagery to map childhood poverty dataset and benchmark. arXiv preprint arXiv:2407.05986.): 95-115.

Park, D. K., Gelman, A., & Bafumi, J. (2004). Bayesian multilevel estimation with poststratification: State-level estimates from national polls. Political Analysis, 12(4), 375-385.

Zimbabwe